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In order to clarify the behavior of solutions of the Lagrangian-averaged Navier–
Stokes-a (LANS-a) equations in the presence of solid walls, we identify a
variety of exact solutions of the full equations and their boundary layer approx-
imations. The solutions demonstrate that boundary conditions suggested for the
LANS-a equations in the literature (1) for a bounded domain do not apply in a
semi-infinite domain. The convergence to solutions of the Navier–Stokes equa-
tions as a Q 0 is elucidated for infinite-energy solutions in a semi-infinite domain,
and non-uniqueness of these solutions is discussed. We also study the boundary
layer approximation of LANS-a equations, denoted the Prandtl-a equations,
and report solutions for turbulent jets and wakes. Our version of the Prandtl-a
equations includes an extra term necessary to conserve linear momentum and
corrects an earlier result of Cheskidov. (2)

KEY WORDS: Fluid dynamics; exact solutions; boundary layers; turbulence;
jets; wakes; stagnation.

1. INTRODUCTION

A set of candidate closure equations for the theory of turbulence in several
classical flows are examined in this study. These are the LANS-a equations



for the Lagrangian-averaged turbulent flow velocity u(x, t) reported in
ref. 3, viz.

“v
“t

+(u · N) v+b NuT · v=−
1
r0

Np+L Dv,

v=(1 − a2D) u, N · u=0.

(1)

The parameter a (assumed constant for now) is the filtering length scale. In
those original papers the dissipation coefficient L was assumed equal to the
fluid kinematic viscosity n. In ref. 3, the steady solutions of (1) were com-
puted for flows in pipes and channels. These solutions were in excellent
agreement with the experiments of Wei and Willmarth (4) (channel flows)
and Zaragola (5) (pipe flows) over the entire available range of Reynolds
numbers. However, a recent study (6) showed that, in general, L > n may be
determined from experimental data; we note that introduction of the dissi-
pation coefficient L does not change the results of ref. 3.

Nondimensionalizing the LANS-a equations using length scale Lg and
velocity scale Ug shows that the coefficient multiplying the dissipation term
becomes Re−1, where Re=UgLg/L is the Reynolds number based on L.
Setting (a, b)=(0, 0) reduces (1) to the Navier–Stokes equations. Setting
(a, b)=(const, 0) gives a variant of Leray’s regularization of the Navier–
Stokes equations. (7) We note that the results of ref. 3 for the comparisons
with turbulence in channels and pipes apply equally to both b=1 and
b=0. Because of its origins in refs. 8 and 9, without viscosity, the LANS-a
model (1) is also known as the viscous Camassa–Holm equations
(VCHE). (1, 3, 10) In what follows, we shall always assume b=1.

The goal of our study is to analyze the effect of solid boundaries on
solutions of the LANS-a equations. At solid boundaries, Dirichlet (no-slip)
boundary conditions on the velocity are imposed. However, application of
u=0 at a boundary is not sufficient for the problem to be well-posed. This
may be illustrated by the simple example of planar Poiseuille flow along the
streamwise direction x in a channel − L [ y [ L. Upon assuming a fully
developed flow u=[U(y), 0], Eq. (1) simplifies to

Uœ − a2Uœœ=A (2)

with boundary conditions U(−L)=U(L)=0. Clearly, U(y) cannot be
determined from the no-slip boundary conditions alone, since (2) is of
fourth order. In ref. 3, this problem was closed by requiring the solution
U(y) to be symmetric: U(y)=U(−y). While this is in agreement with
experimental data for the straight channel, this symmetry requirement is
not applicable for more general flows. For instance, flow through an
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expanding channel exhibits symmetry-breaking. (11) Thus, it is of interest to
find other boundary conditions to be imposed at solid boundaries. This
was initiated by Marsden and Shkoller (1) but, as we show below using
explicit examples, the boundary conditions suggested in ref. 1 for finite-
energy solutions in bounded domains need to be modified for infinite-
energy solutions in unbounded domains.

In the current investigation, we consider semi-infinite fluid domains
and require physically relevant behavior of solutions far from the wall. This
furnishes some well-posed problems which we are able to solve in closed
form. For the full LANS-a equations, solutions of two stagnation-point
flows and the flow generated by a rotating disk are determined, while for
their boundary layer variant, solutions for planar jets and wakes are found.
In the case of the stagnation-point flows for LANS-a, we discover that the
stationary solutions are not unique. This has some interesting implications
for the behavior of solutions of the full LANS-a as a Q 0. For example, the
non-uniqueness caused by the presence of the walls might not be unphysi-
cal, since the Navier–Stokes equations also exhibit non-uniqueness of
stationary solutions in many geometries involving solid walls.

The paper is organized as follows. Exact solutions describing stagnation-
point flows are given in Section 2. Explicit solutions for planar and axi-
symmetric stagnation-point flows are derived, and a discussion of oblique
planar stagnation-point flow is given. Section 3 deals with the swirling flow
generated by a rotating disk. To make further progress in the analysis of
the wall effects, Section 4 is devoted to the derivation of the boundary layer
approximation to the LANS-a equations. In briefly outlining the deriva-
tion, we correct the equations of Cheskidov (2) to restore conservation of
linear momentum. The corrected Prandtl-a equations are then used to
describe planar turbulent wakes and jets, and reasonable corroborations of
solutions with experiments are observed.

2. STAGNATION-POINT FLOWS

2.1. Stagnation Point Flows: Normal Incidence

Consider a two-dimensional stagnation-point flow impinging normally
to a flat wall placed at y=0. In terms of the streamfunction Y(x, y) for
which the velocity components (ux, uy) are given by (“Y/“y, −“Y/“x), the
outer potential flow Y0=axy is characterized by the strain rate a from
which the characteristic length L=`L/a can be formed. Re-scaling the
spatial coordinates with this length, (x, y)=`L/a (X, Y), yields for the
outer potential flow Y0=LXY.
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Since this streamfunction does not satisfy the no-slip boundary condi-
tion ux=0 at y=0, we follow Heimenz (12) and seek a solution of the
LANS-a equations in the form Y=LXf(Y) that matches the outer poten-
tial flow as Y Q .. Equations (1) yield the fifth-order ODE for f(Y) with
F=f − ã2fœ

F'−+fFœ − (1+b) fŒFŒ+b(fŒ
2 − ã2fœ

2)+1=0 (3)

where ã=a `a/L and the prime denotes differentiation with respect to Y.
Imposing the no-slip boundary condition at the impermeable wall and
matching in the far field require

f(0)=0, fŒ(0)=0, lim
Y Q .

fŒ(Y)=1. (4)

The Heimenz equation for stagnation-point NS flow is obtained by setting
ã=b=0 in (3). In this case, F=f and the order of the equation is
reduced by two.

The three boundary conditions (4) are sufficient to find the solution to
the original third order Heimenz equation. On first sight, it appears there
are an insufficient number of conditions to solve the fifth order Heimenz-a
equation (3). However, the boundary condition of asymptotic matching
fŒ(.)=1 admits the additional boundary conditions

lim
Y Q .

fœ(Y)=0, lim
Y Q .

f'−(Y)=0. (5)

We choose these in particular because the Heimenz solution for laminar
flow approaches the asymptote monotonically, and we expect similar
behavior from the Lagrangian-averaged turbulent flow solutions.

The system (3)–(5) has the single dimensionless parameter ã taken here
as a constant. A theorem (1, 10) states that when a Q 0, the solution of the
LANS-a equations converges to a solution of the Navier–Stokes equations.
This theorem, however, was derived for flows in either periodic, or
bounded domains, and may be violated in semi-infinite domains where
solid walls are present and the solution has infinite energy. In particular, an
analytical solution to the Heimenz-a flow is

f(Y)=Y+ã(e−Y/ã − 1), (6)

ux=X(1 − e−Y/ã), uy=Y+ã(e−Y/ã − 1). (7)

It is clear that, in the limit of ã Q 0, solution (7) does not converge to the
standard Heimenz solution. In fact, it does not have a well-defined regular
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Fig. 1. Velocity function fŒ(Y) for Heimenz-a flow computed for ã=0.3. H: Heimenz
solution, R: regular solution, S: singular solution (6).

limit as ã Q 0. We therefore call this solution singular and denote it with
the letter S in Fig. 1. It is also clear that for the solution (7), the action of
the Stokes operator (Stokesian) on the velocity at the wall is not zero, but
is equal to (X/ã2, 1/ã2). This is in contradiction with the result of Marsden
and Shkoller (1) for bounded domains, stating that the Stokesian of the
velocity at a solid wall must be equal to zero.

It is interesting to note that another solution of (3)–(5) exists which
does converge to the Heimenz solution. This velocity function f(Y) can be
found numerically by continuation in a from the Heimenz solution (a=0).
We call this solution regular and denote it with the letter R in Fig. 1.
Finally, the Heimenz solution (a=0), denoted by the letter H, is included
in this figure for comparison.

We conjecture that only the regular solution should be considered the
physically correct solution. Thus, if a theorem about the existence of sta-
tionary solutions and convergence as a Q 0 were possible to prove in the
presence of walls, it should state that there is at least one solution of the
LANS-a equations that converges to the solution of the Navier–Stokes
equations as a Q 0. Our explicit examples show that proof of a more
general result, that all solutions of the LANS-a equations converge to the
corresponding solution of the Navier–Stokes equations, will not be possible
in general. The lack of convergence as a Q 0 is not because the domain is
unbounded. One may prove, for example, that the solutions of the LANS-a
models converge to solutions of the Navier–Stokes in Rn, provided these
solutions have finite ‘‘energy’’ (that is, finite H1 and L2 norms). The solu-
tions discussed here do not converge to those of the Navier–Stokes equa-
tions because these solutions have infinite energy (H1 and L2 norms). The
convergence theorem proved in [10, 1] states that convergence takes place
in a norm or weak topology, which involves the L2 norms of the solutions.
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However, the solutions to the alpha models presented here are not in L2.
Consequently, defining their convergence in the sense of extracting a
bounded subsequence in the L2 norm, etc., is not possible. In fact, the
solutions established here were not envisioned in the original derivation of
the alpha models. The alpha models were derived using Hamilton’s varia-
tional principle, in which the kinetic energy is the square of the H1 Sobolev
norm. In that derivation, the solutions were expected to belong to H1 and
hence to L2. However, the solutions presented here do not fulfill this
expectation. Instead, the solutions established here transcend the class that
was originally expected in the derivation of the alpha models. Additional
investigations will be pursued elsewhere for this new class of solutions,
which satisfy the alpha model equation, but not the variational principle
used in its derivation.

2.2. Stagnation Point Flows: Oblique Incidence

The Heimenz-a equation may be generalized to an oblique stagnation-
point flow. This generalization was first discovered by Stuart (13) and then
rediscovered independently by Tamada (14) and Dorrepaal. (15) The main
idea is to notice that a family of stream-functions of the form Y0=
L(XY+kY2/2) describes a potential stagnation-point flow with slanted
streamlines. The slope of streamlines at infinity is proportional to the
dimensionless parameter k. Again, this flow does not satisfy the boundary
conditions at the wall, so a modified streamfunction of the form

Y=L[Xf(Y)+kg(Y)] (8)

is posited. Substituting expression (8) into the LANS-a equations shows
that the function f(Y) satisfies Heimenz-a equation (3) while the function
g(Y) satisfies the following linear sixth-order ODE, where as before
F=f − ã2fœ, and now G=g − ã2gœ,

(G'−+fGœ − (1+b) fŒGŒ)Œ=−b(FŒgœ+fœGŒ). (9)

Boundary conditions for g(Y) are the no-slip conditions at the wall and the
far field asymptotic matching conditions, namely

g(0)=0, gŒ(0)=0, lim
Y Q .

gœ(Y)=1. (10)

The modified streamfunction Y describes a stagnation-point flow with
streamlines inclined at angle arc tan(1/k) relative to the wall. Again, the
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asymptotic matching condition at Y=. admits additional boundary con-
ditions, the first three of which are

lim
Y Q .

g'−(Y)=0, lim
Y Q .

g iv(Y)=0, lim
Y Q .

gv(Y)=0. (11)

Given the solution f(Y), the function g(Y) can be found by numerically
solving the boundary-value problem (9)–(11). The one-parameter family of
solutions of this problem we denote as the Stuart-a solutions for turbulent
oblique stagnation flow. Note that equation (9) for g(Y) is linear. For each
solution f(Y) of the Heimenz-a equations there is an associated solution
g(Y), and the pair f(Y), g(Y) defines a family of profiles with varying
incident angles (8). Since there are at least two solutions for f(Y), there
will be at least two solutions of the Stuart-a equations. One solution is
regular, converging to Stuart flow as a Q 0. Another one is singular, not
having a regular limit as a Q 0.

2.3. Radially-Symmetric Stagnation-Point Flow

For the sake of completeness, we also analyze radially-symmetric
stagnation-point flow. This problem has the greatest practical interest of all
stagnation-point flows. Its analysis is completely analogous to the Heimenz-a
flow, and hence it may be explained briefly.

Following Homann, (16) we look for the Stokes streamfunction Y(r, z)
in (r, z) cylindrical coordinates giving the velocities (ur, uz) as (r−1

“zY,
−r−1

“rY). The axisymmetric irrotational stagnation-point flow in this
system is given by Y=ar2z. Upon rescaling the coordinates as (r, z)=
`L/a (R, Z), a solution is sought in the form Y(R, Z)=`L3/a R2f(Z).
Again matching to the outer flow and requiring no-slip at the impermeable
plate yields boundary conditions (4), with Y replaced by Z. Substitution of
Y(R, Z) into (1) yields the following fifth-order ODE for f(Z),

F'−+2fFœ − (1+b) fŒFŒ+b(fŒ
2 − ã2fœ

2)+1=0, (12)

where F=f − ã2fœ and ã retains its definition given in Section 2.1. This
Homann-a problem has an analytic solution,

f=Z+ã(e−Z/ã − 1), (13)

whose streamlines again form a boundary layer of thickness % ã near the
wall. There is also a regular solution, converging to the Homann solution
as a Q 0. The spatial behavior of these solutions is similar to the two-
dimensional case illustrated in Fig. 1.
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3. VON KÁRMÁN-a SWIRLING FLOWS

Von Kármán flow allows one to analyze the effect of rotation in the
vicinity of solid walls. For the LANS-a equations, we follow von
Kármán (17) in deriving a reduction of the LANS-a equations that describes
the swirling motion of a fluid driven by a disc rotating in its own plane.
Here cylindrical coordinates (r, z) are used for a disc coincident with the
plane z=0 rotating at constant angular velocity W about the z-axis. The
ansatz for the velocity field consistent with the boundary conditions is

ur=rWf(Z), uf=rWg(Z), uz=`L/W h(Z), (14)

where Z=`W/L z is the scaled vertical coordinate. Equations (1) yield
the following set of ODEs for f(Z), g(Z), h(Z), in which F=f − ã2fœ and
G=g − ã2gœ,

[(1+b) fF − (1 − b) gG+FŒh − Fœ]Œ

=b(FfŒ+gGŒ+gF), 2fG+GŒh=Gœ, (15)

where 2f+hŒ=0 and ã=a `W/L. The boundary conditions for (15) are
the no-slip conditions at Z=0 and the matching conditions at Z=., viz.

f(0)=0, g(0)=1, h(0)=0,

lim
Z Q .

f(Z)=0, lim
Z Q .

g(Z)=0, lim
Z Q .

h(Z)=const.
(16)

The vertical velocity function h(Z) tends to a constant as Z Q .. This
corresponds to uniform vertical suction into the boundary layer on the
disk.

Equations (15) form a tenth-order system. Boundary conditions at
infinity provide additional requirements for the derivatives of f(Z) and
g(Z), such as fŒ(.)=0 and gŒ(.)=1. Generalizations of this problem,
including the rotation of fluid at infinity, can be considered through use of
an alternative scaling and changing the boundary conditions at Z=0 and
Z=., see ref. 18.

The solutions are obtained by continuation in a starting at a=0 with
the von Kármán solution. An example integration showing h(Z) of the von
Kármán-a solution for a=0.5 is demonstrated on Fig. 2. We see that
increasing a decreases the suction velocity h(Z=.). The solution, which
can only be obtained numerically, tends to von Kármán’s solution as
ã Q 0, and is regular, according to the definition in the previous section.
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Fig. 2. Velocity function h(Z) for von Kármán-a flow computed for ã=0.5. vK: von
Kármán’s solution (a=0), 0.5: numerical solution for a=0.5.

For the case of von Kármán swirling flows, we have failed to find a singu-
lar solution. It is not clear at present whether a singular solution exists for
this problem.

4. PRANDTL-a BOUNDARY-LAYER EQUATIONS

4.1. Derivation

In many practical applications, viscous effects of a streamwise flow are
confined to a narrow region in the cross-stream direction. The leading
order description of these so-called boundary-layer flows may be found by
introducing a small parameter which is the ratio of the cross-stream scale
to the much larger downstream scale. The resulting boundary-layer equa-
tions first introduced by Prandtl, (19) offer a good description of the flow
adjacent to solid walls, as well as the flow in narrow jets and wakes. Since
this article is concerned with wall effects, it is only natural for us to inves-
tigate the LANS-a equations in the limit when boundary-layer flows are
present.

Let us assume, for simplicity, that we have a planar (x, y) flow with
coordinate velocities (ux, uy). Assume the characteristic streamwise velocity
is of order Ug, the scale along the streamwise direction x is of order L and
the scale in the plate-normal direction y is of order d ° L. Upon scaling
coordinates according to x=LX and y=dY and streamwise velocity as
ux=UgUx, the continuity equation gives uy=EUgUy, where E=d/L, and
the pressure analog q scales as q=rU2

gQ. Balancing viscous diffusion with
the leading order convective terms in (1) requires d ’ `L. Cheskidov (2)

used this re-scaling for (1) to obtain the boundary layer approximation to
LANS-a equations. Unfortunately, the boundary-layer equations obtained
in ref. 2 do not conserve linear momentum. To correct this perhaps subtle
error in Cheskidov’s equations, we recall that (1) was derived under the
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assumption that a=const. Since a is the Root-Mean-Square (RMS) of the
Lagrangian fluctuations, the scale of the fluctuations and therefore a is
dependent on the thickness of boundary layer, which varies with the
streamwise coordinate x. Thus, one needs to start with the LANS-a equa-
tions for variable a. This modifies the Helmholtz operator, but more
importantly, it results in the additional term |Nu|2 Na2/2 on the left-hand
side of (1); see for example refs. 6, 20, and 21. Re-scaling of this modified
LANS-a equation in the thin-layer approximation yields the Prandtl-a
boundary-layer equations,

Ux
“Vx

“X
+Uy

“Vx

“Y
+ã2 1 “Ux

“X “Y
“Ux

“Y
−

“Ux

“Y2

“Ux

“X
2+

“ã2

“X
1“Ux

“Y
22

=−
dQ̃(X)

dX
+

“
2Vx

“Y2 , (17)

where ã=a/d and Vx=Ux − ã2
“

2Ux/“Y2, and the pressure analog
Q(X, Y) is related to Q̃(X) by

Q(X, Y)+
b

2
5U2

x − ã2 1“Ux

“Y
226=Q̃(X). (18)

Observe that the modified pressure Q(X, Y) is not independent of Y,
as it is in classical boundary-layer theory, but has an additional dependence
on Y due to the term vj Nuj in (1). This boundary-layer approximation of
the NS-a equations defines the Prandtl-a model.

In the version of Prandtl-a equations in ref. 2, obtained by direct
application of thin-layer approximation to (1), the pre-factor of the last
term of the left-hand side of (17) is equal to 1/2, and not 1. This has
serious consequences for the conservation of momentum, which must be
obeyed by any model of turbulent flow. Taking the integral of (17) with
respect to y leaves no bulk terms in the absence of external forces. In this
case, the change of momentum of any fluid parcel is caused exclusively
by the forces acting on the boundaries of this parcel. This is not the case
for the version of the Prandtl-a equations in ref. 2, where the bulk term
1
2 > (“yUx)2

“xa2 dy affects the change of momentum. If a2=const, the
unphysical generation of momentum due to this term is absent. However,
as we show for the examples below, a(X) necessarily grows in proportion
to the thickness of boundary layer. Consequently, momentum conservation
requires the corrected version of the Prandtl-a equations in (17).

The rest of this section is devoted to two particular applications of the
Prandtl-a equations in (17): a turbulent wake and a turbulent jet. These
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problems will allow us to connect the predictions of Prandtl-a models with
experiments. While the new correction term in Prandtl-a equations drops
out of the asymptotic wake problem, for the case of a planar jet the
conservation of momentum is crucial.

4.2. Planar Turbulent Wakes

Suppose a slender reflection-symmetric two-dimensional body is immersed
in a uniform stream of velocity U. aligned with the x-axis. The body is
centered about y=0 and a wake flow develops downstream of the body.
Far downstream the velocity deficit w=U. − u(X, Y) will be small, i.e.,
w/U. ° 1. Here x=LX and y=dY as before. Upon scaling the stream-
wise and deficit velocities with U., the Prandtl-a boundary layer equations
(17) may be linearized to obtain the leading order description,

“
2W

“X “Y
=

“
3W

“Y3 , W=w − ã2 “
2w

“Y2 . (19)

Following Goldstein (22) we seek a solution in the form (w(X, Y), W(X, Y))=
X−1/2(f(g), F(g)) where g=Y/X1/2. For similarity, a must grow as the
boundary layer thickness, so we set a(x)=a0x1/2. This self-similar ansatz
yields the fifth-order system for f(g)

F'−+1
2 (F+gFŒ)Œ=0, fœ − ã2f=−ã2F, (20)

where ã2=L/(U.a2
0). The boundary conditions are f( ± .)=0 and f(g)

is even, so fŒ(0)=0. The solution satisfying these conditions is

f(g)=C 52 cosh(ãg) −3e ãg erf 1g+2ã

2
2− e−ãg erf 1g − 2ã

2
246 . (21)

Here C is adjusted so that f(0)=1 for comparison with experimental
results. The agreement of this Prandtl-a solution with experimental data of
Townsend (24) and Wygnanski et al. (23) is presented in Fig. 3. For compari-
son, we also display the empirical result f(g)=exp(−0.693g2) traditionally
used in describing the velocity profile (see Schlichting, (11) p. 743).

4.3. Planar Turbulent Jets

The Prandtl-a equations for the case of a planar turbulent jet conserve
the momentum flux J0=>+.

−. UxVx dy. The dimensions of J0 are L3/T2.
Since the length scale in the planar jet is growing linearly with X, (11) we
choose length scale lg=X and velocity scale at a given position X as
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Fig. 3. Comparison of analytical solution (21) (solid line) with experimental data of
Wygnanski et al. (23) (dots) and Townsend (24) (circles). The dashed line represents the traditio-
nal Gaussian fit f(g)=exp(−0.693g2) in Schlichting, (11) p. 743.

ug=`J0/X. Then the sole choice for the dissipation coefficient is L ’

`J0X. Here conservation of momentum was crucial for choosing the
scales, so consideration of the free jet flow could not be accomplished using
the Prandtl-a model equations in ref. 2 derived using a constant value of a.

We posit a self-similar solution for the streamfunction in the form
k(X, Y)=`J0X f(y/X) with a(X) ’ X, and choose the width of the
turbulent jet to satisfy d(X) ’ X, consistent with experiments. (11) The
similarity function f(g) is odd f(g)=−f(−g) and satisfies the fifth-order
ordinary differential equation

fœ
2+2ff'−+ff iv − fŒ

2 − ffœ=f'− − fv. (22)

Boundary conditions for f(g) are f(g) Q f0 when g Q .. The constant f0

is found as part of the solution. All the coefficients were removed from
(22) by re-scaling g. Integrating (22) twice and using the aforementioned
boundary conditions, we obtain

ffœ − 1
2 f2=fŒ − f'− − 1

2 f2
0. (23)

All the experimental results in the literature are presented with the velocity
at g=0 being normalized to unity; therefore, we require fŒ(0)=1. From
the condition f(g) Q f0 when g Q . we find numerically f0 4 1.806. There
is no remaining parametric freedom in the solution of (23). Figure 4 shows
its agreement with the experimental data of Gutmark and Wygnanski. (25)
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Fig. 4. Comparison of the numerical solution of (23) (solid line) with data of Gutmark and
Wygnanski (25) (dots).

5. SUMMARY

In this short paper, we have reported the following observations.

• Boundary conditions for the LANS-a equations in a bounded
domain do not necessarily apply in a semi-infinite domain for solutions
with infinite energy. Our analytical solutions provide guidelines for choos-
ing these properly.

• In semi-infinite domains, multiple solutions with infinite energy
exist for LANS-a. Examples of this were already known for the Navier–
Stokes equations.

• We introduced the Prandtl-a approximation so as to preserve con-
servation of linear momentum and we discussed exact solutions of the
Prandtl-a equations for turbulent jets and wakes.
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